
Supplementary Figure 1: Stimulus information 
(a) Examples of stimuli used to test face selectivity (Fig. 1a, b). 
(b) (top row) 8 pictures of real faces; (middle row) corresponding brightness edge 
maps (obtained using the Prewitt method with a threshold of 0.05); (bottom row) 
corresponding cartoon faces constructed using 7 elementary features: hair 
outline, eyes, irises, eyebrows, nose, mouth, and face outline. Note how the 
edges define these elementary features. These specific cartoons were used in 
the experiments shown in Fig. 1c, and in a psychophysical experiment to 
assess whether such simple cartoons can capture face identity (part c below). 
(c) Identification performance for cartoon faces, averaged across 8 subjects. 
Subjects were asked to match 16 real faces to 16 cartoon versions. Horizontal 
black line indicates chance performance (0.06). Each cartoon face shown in part 
b was correctly matched to its real counterpart by at least half of the subjects. 
(d) Full set of 27

 partial faces constructed from a set of 7 elementary features, 
used to analyze neuronal mechanisms for face detection (Fig. 2). 
 
Supplementary Figure 2: Example of a time-resolved tuning profile 
Example time resolved tuning curve of a cell significantly tuned to iris size. The 
time resolved tuning curve (centre) plots firing rate as a function of feature value 
and time after feature value update (post stimulus time). The firing rate (left, blue) 
was mildly modulated by the feature update cycle. But response heterogeneity 
(left, red) was strongly influenced by the feature values. Heterogeneity surpassed 
the significance threshold (left, dotted red line, see Methods) between 136 and 
296 ms after feature update, peaking at 195 ms. The tuning curve at this delay 
(bottom) was modulated by more than a factor of two between the extreme 
feature values. For comparison, the average shuffle predictor tuning profile is 
shown on the right. It shows the same firing rate modulation after feature update 
as the original tuning profile, but no dependence on feature value. 
 
Supplementary Figure 3: Comparisons of response and feature tuning time 
courses 
Comparison of time courses of middle face patch neuron responses to (a) 
pictures of faces, cartoons and gadgets presented for 200 ms and with 200 ms 
ISI and (b) to RSVP cartoon face stimulus presentation with 116 ms presentation 
time. Population PSTH (a, left) and face selectivity index (FSI) time course (a, 
right) are causally smoothed with a half Gaussian of width 10ms. Reponses to 
faces, cartoons and non-face objects start to differ about 80 ms after stimulus 
onset (a, left). At that point the face selectivity index rises steeply (a, right) and 
remains high during the entire response period. Peak face selectivity is reached 
around 170 ms post stimulus time. The population PSTH to RSVP stimulus 
presentation (b, upper left) is not much modulated. This is because different cells 
exhibit response maxima over a large range of post-stimulus times (b, lower left, 
which shows normalized PSTHs of all cells, sorted by the time delay of the 
maximal response). Significant tuning to cartoon features starts 75 ms after 
feature update and peaks 180 ms after feature update (b, upper right, 
heterogeneity of all significant tuning curves in blue, red lines mark time point of 
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emerging tuning (half maximal heterogeneity value); lower right: time courses of 
tuning, sorted by onset). Thus the time course of tuning to cartoons is 
comparable to the time course of development of face selectivity to real-world 
stimuli, despite the very different stimulus pacing in the two experiments. (a, 
same cells as in Fig. 1, b, same cells as in Figs. 3 and 4) 
 
Supplementary Figure 4: Influence of fixation position on feature tuning 
See Supplementary Text 1 for details. 
 
Supplementary Figure 5: Relationship between incidence of tuning and 
physical size of feature changes 
See Supplementary Text 2 for details. 
 
Supplementary Figure 6: Tuning in neighboring cells 
See Supplementary Text 3 for details. 
 
Supplementary Figure 7: Singular value decomposition analysis and 
polynomial fitting of joint tuning functions 
See Supplementary Text 4 for details. 
 
Supplementary Figure 8: Cross-feature correlations 
Matrix of all joint tuning curves of the example cell from Fig. 5a. 
 
Supplementary Figure 9: Fitting a Gamma function to the shuffle 
heterogeneity distribution 
Distributions of 5016 heterogeneity values obtained by reshuffling (at the relevant 
response delay) for four randomly chosen cells. Histograms are normalized to an 
area of 5016. The distributions are well fit by a gamma function (red curves). 
Using gamma curve fits, areal percentiles can be computed and significance 
thresholds (for p=0.001, i.e. 0.1% of the area) computed (light red arrow). This 
method does not require many samples. When we repeated the procedure for 16 
subsets of the 5016 data points (each with 313 or 314 data points), we obtained 
16 estimates for the significance threshold (marked by the small light red bars). 
While these values differ, their distribution is actually quite compact, 
demonstrating robustness. The significance threshold obtained by the method 
used in this paper is shown by the dark red arrow. In brief, this method is based 
on the five largest heterogeneity values of the reshuffle distribution. Only the 
ranking of values is considered and no assumption needs to be made about the 
shape of the distribution of the resampled heterogeneity values. In all four cells, 
this significance threshold is higher than that of the gamma fit based method. 
Thus, this method ensures that the actual heterogeneity value deemed 
significant, is at least on a par with the five largest values of the 5016 reshuffle 
samples, and it is robustly higher than the method based on the gamma 
distribution. 
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Supplementary Figure 10: Tuning in three example cells assessed by 
Gaussian fitting and Entropy-based methods. 
See Supplementary Text 5 for details. 
 
Supplementary Figure 11: Incidences of tuning as assessed by the 
Gaussian and Entropy-based methods. 
See Supplementary Text 5 for details. 
 
Supplementary Figure 12: Results of Gaussian fitting method 
See Supplementary Text 5 for details. 
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Supplementary Text 1: Tuning and Eye Positions 

The paucity of tuning to nose- and mouth-related features compared to eye and eyebrow 

related ones, causes the concern that this may be the result of preferential looking to these 

features, possibly as a consequence of more attention being paid to these parameters than 

to others. To address this concern, we analyzed the dependence of tuning on eye 

positions. 

Monkeys foveated the central fixation spot with some horizontal and vertical deviation 

(horizontal mean cross-experiment standard deviation 0.78º, 0.92º, and 0.63º visual angle 

in monkeys A, T, and L, and vertical mean cross-experiment standard deviation of 0.93º, 

0.97º, and 0.92º, respectively). Comparison of these figures to the average cartoon face 

(Supplementary Fig. 4a) shows that these deviations, though less than one degree of 

visual angle in all animals, could have brought the fovea closer to eyes and mouth and 

may have induced some bias for one parameter or the other. (Note that the prevalence of 

tuning for facial layout parameters and the higher incidence of tuning for hair than mouth 

or nose parameters cannot be explained this way.) 

We then compared tuning during times when the monkey was foveating above the 

fixation spot, which should favor tuning to eye parameters, with tuning during times 

when he was foveating below, which should favor tuning to mouth parameters. 

Incidences of tuning to features (Supplementary Fig. 4b) and categories 

(Supplementary Fig. 4c) were very similar in the two conditions (Pearson correlation 

coefficient of the two distributions in Fig.1b: r=0.99, p<<0.001). (There was slightly less 

tuning to eye related parameters during periods when the monkey’s gaze was above 

fixation, and slightly less to mouth related parameters during fixations below, the 

opposite of what a gaze-direction explanation would predict.) This close match was 

found for each of the three monkeys (Pearson correlation coefficients of r=0.98, 0.97, and 
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0.99, respectively, all highly significant 

p<<0.001), and in none any systematic or 

significant difference in tuning incidence to 

any of the features or categories was 

observed. Thus, there is no indication that eye 

position plays a role in determining the 

incidence of tuning to facial features in our 

experiment. Specifically, the hypothesis that 

preferential fixation on eyes may have caused 

more tuning to this parameter, cannot be 

substantiated. 

Supplementary Figure 4 Influence of fixation 
position on feature tuning. (a) Average cartoon 
face (mean across 500 random instantiations). 
Green circle indicates range of fixation positions 
(monkey T, one standard deviation). Incidence of 
tuning to the 19 feature dimensions (b) and six 
feature categories (c) during fixation above (black) 
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Supplementary Text 2: Incidence of Tuning and Physical 

Size of Feature Changes 

It is plausible that larger stimulus changes are more likely to induce tuning than smaller 

stimulus changes. We therefore analyzed, for each of the 19 different dimensions, the 

average number of pixel changes associated with any change along that feature 

dimension. As shown in Supplementary Fig. 5a, pixel changes were indeed quite 

different for the 19 different dimensions. This is expected, since the range of feature 

changes was set for each feature to span the entire range of physically possible faces, 

which is very different, of course, for, e.g., facial layout and nose size. The range of pixel 

values for face aspect ratio is the largest, those for iris size amongst the smallest. Despite 

this huge difference in physical range these two parameters are the two most popular ones 

Supplementary Figure 5 Relationship between incidence of tuning and physical size of feature changes. 
(a) The average number of pixels differing between successive displays for each of the 19 dimensions. Step 
size was, by far, largest for face aspect ratio (dimension 1, conventions as in Figure 3d). The second 
biggest change occurs for change of hair thickness (dimension 5). (b) Number of neurons tuned to each of 
the 19 feature dimensions, the five most popular dimensions colored in red, the less popular dimensions in 
green. Iris size (dimension 12) is the second most popular dimension, yet, the physical change associated 
with it is the second smallest. (c) Scatter plot of neural tuning vs. pixel change for the 19 dimensions (a and 
b are the marginals). (d) Same scatter plot log scaled, the five most popular dimensions in red, less popular 
ones in green, and dimensions without tuning shown in blue. Pearson correlation coefficient is 0.67 for all 
19 dimensions, and 0.92 for the ten intermediately popular dimensions (both highly significant p<0.001). 
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among middle face patch neurons (Supplementary Fig. 5b). Thus, the physical size of 

changes cannot explain all of the variance in tuning preference across dimensions. 

However, incidence of tuning is correlated with magnitude of physical change 

(Supplementary Fig. 5c, d). The Pearson correlation coefficient between tuning 

incidence and pixel change for the 19 dimensions is 0.67, i.e. 45% of the variance of 

tuning incidence can be explained by the range of physical feature variation. This 

correlation is strongest for the 10 parameters with relatively small number of neurons 

tuned (r=0.92, green bars in b and green dots in d), while for features without tuning 

(blue), trivially, and for features with a lot of tuning (red), no significant correlation was 

found.  
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Supplementary Text 3: Tuning in neighboring cells 

We recorded from 52 pairs of neighboring cells. When one cell of a simultaneously 

recorded cell pair was significantly tuned to a set of feature dimensions, its neighbor was, 

on average, tuned to 53% of these dimensions as well. (For example, if cell 1 was tuned 

to dimensions 1, 5, and 7 and cell 2 was tuned to dimensions 5, 7 and 12, then the overlap 

fraction would be 67%.) This fraction was significantly larger than that for non-

neighboring cell pairs (40%, p<0.01, shuffle predictor); the distribution of 5000 shuffle 

predictors derived from random assignments of significantly tuned feature dimensions to 

the cells is shown in Supplementary Fig. 6a (green arrow marks experimentally 

determined fraction). 

However, the total number of significantly tuned dimensions was only weakly correlated 

in neighboring cells (r=0.20), overlapping with the distribution of shuffle predictors and 

not significant at p=0.05 (Supplementary Fig. 6b). 

Thus, there is some evidence for local clustering of shape selectivity within the middle 

face patches, but also of substantial tuning differences between neighbouring cells. 

Supplementary Figure 6 Tuning in neighboring cells. The degree of overlap in feature tuning between 
neighboring cells (green arrows) was quantified in two ways and tested against 5000 shuffle distributions 
derived from random assignments of significantly tuned feature dimensions to 52 cells. (a) Fraction of 
dimensions two neighboring cells are both tuned to. (b) Correlation of the total numbers of significantly 
tuned dimensions in neighboring cells. 
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Supplementary Text 4: Singular value decomposition 

analysis and polynomial fitting of joint tuning functions 

 

We found that the average middle face patch cell is tuned to 2.8 dimensions.  How is 

tuning to these different dimensions integrated within each cell?  As discussed in the 

paper, if feature integration is to preserve faithful measurement of individual features, 

then tuning to feature combinations should be separable into tuning to individual 

features1.  

 To test for separability, we performed a singular value decomposition (SVD) of 

the joint tuning functions1-3. SVD decomposes a joint tuning matrix into a sum of 

component matrices, each of which is the outer product of two single dimension 

functions. The weight of each matrix is called its singular value (SV). If this 

decomposition is dominated by one component, the joint tuning matrix is separable; if 

more than one component is necessary, then it is inseparable. We therefore tested for the 

strongest SV to be significant (using reshuffling procedures, p<0.01) and the second 

strongest component to be insignificant (p>0.05) 1. Using this method, we found all 771 

joint tuning curves to be separable. 

 In the section “Face Differentiation: Integration of Features”, we show that 

integration schemes used by cells could be well modelled by both multiplication and 

addition of individual tuning curves; the average correlation coefficient between actual 

joint tuning functions and multiplicative predictors was 0.89, while for additive 

predictors, it was 0.88 (significantly lower (p<0.01) than multiplicative predictors, 

Wilcoxon rank sum test).  This means the integration scheme for each of the tuning curve 

pairs cannot be exactly determined. However, since we studied a large population of cells 

with 771 feature pairs, we can make some statements about which kind of separability 
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scheme the population shows. Even though for any given pair of dimensions, a certain 

integration scheme, say multiplicative, may not be distinguishable from another, say 

additive, with high confidence, if in the population one scheme predominates, this allows 

us to be confident about integration schemes at the population level. 

In order to quantify the integration scheme used by each neuron in a general way, we 

plotted all data points of the joint tuning function against the prediction of an additive 

combination of single feature tuning curves and fitted the data with the exponential 

function yjoint = m ( xadd – b )e + o. An exponent of 1 indicates an additive mode of 

integration, 2 a multiplicative one. Supplementary Fig. 7a shows four examples of such 

scatter plots together with their fits, and Supplementary Fig. 7b shows the distribution 

of exponents of all fits. Exponents ranged from 0.7 to 3.9. About three quarters (78%) of 

exponential fits were compatible with additive, multiplicative, or some intermediate form 

of feature integration (exponents between 0.9 and 2.1). Twelve percent of all fits were 

sub-additive (exponent < 0.9), and ten percent supra-multiplicative (exponent > 2.1). 

Supplementary Figure 7 Singular value decomposition analysis and polynomial fitting of joint tuning 
functions. (a) Four examples of polynomial fits to joint tuning functions. (b) Distribution of exponents of all 
fits (n = 771). 
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Thus middle face patch neurons use a range of integration schemes from the sub-additive 

to the supra-multiplicative, providing a rich repertoire of feature integration in face space. 
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Supplementary Text 5: Finding significantly tuned 

dimensions using Gaussian fitting 

We also used fitting of a Gaussian function to find significantly tuned dimensions. We 

fitted a generalized Gaussian with four free parameters of the form 

y = o + a*exp(-((x-p)/(w/2))2)   

to each tuning curve (o offset, a amplitude, p peak position, and w peak width). As fitting 

algorithm we used the trust-region method based on the interior-reflective Newton 

method (implemented in the MATLAB routine lsqcurvefit). We resorted to this 

algorithm, after trying a number of different ones, because it allowed for the specification 

of parameter borders. Specifying these borders turned out to be critical for successful fits 

of ramp shape tuning curves. The reason is that when these curves are to be described by 

Gaussians, this can be done by a virtually infinite number of parameter combinations 

with almost identical shape over the relevant region of independent values (feature values 

1 to 11). This is because only one Gaussian flank is fitted to the actual data, while center 

position, amplitude and offset are largely unspecified. Since most of our tuning curves 

were ramp-shaped, it was critical to address this problem by limiting the range of 

possible parameters. 

Goodness of fit was assessed by the χ2 metric1. Following Young et al.2, we required the 

χ2 value to be at least 15% smaller than the variance of the data. We then tested for 

significance of the amplitude parameter at p=0.01. This level was chosen to limit the false 

detection rate. Thus, as is customary (e.g., Press et al., 1986), we required successful 

convergence of the fit, a sizeable reduction of unexplained variance and significance of 

the one (out of four) parameters that is most important for description of tuning. We 

tested the fitting routines with two large test data sets of several thousand artificial tuning 

curves. The first set consisted of artificially generated Gaussian shaped tuning curves 
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with amplitudes at least 1% of the height of the offset. More than 97% of the Gaussian 

tuning curves were found by Gaussian fitting. The second data set consisted of 11-

element random data vectors. Using the random data, we determined the false positive 

rate of the algorithm to be only slightly higher than the expected 1%. 

We then applied this method to the actual data. Three example fits are shown in 

Supplementary Fig. 10. 

Supplementary Figure 10 Tuning in three example cells assessed by Gaussian fitting and Entropy-based 
methods. Tuning was significant by both methods. 

We applied the Gaussian fit method to our entire dataset and compared results obtained 

with our data reshuffling entropy based method (referred to from now on as the Gaussian 

and the Entropy method, respectively). The Gaussian method found fewer significantly 

tuned dimensions than the Entropy method. With the Entropy method, we had found 695 

dimensions to be significantly tuned, rendering 90.1% of all 272 cells to be significantly 

tuned. With the Gaussian method 412 dimensions were found to be significantly tuned, 

rendering 75.6% of the cells to be significantly tuned. Those cells that were found to be 

tuned, were, on average tuned to fewer dimensions (2.0 vs. 2.8 for the Entropy method), 

as is detailed in Supplementary Fig. 11a. The Gaussian method found significant tuning 

in all 19 stimulus dimensions with preference for the eye and facial layout parameters as 

the Entropy method, but this preference was less pronounced than it was for the 

dimensions found with the Entropy method (Supplementary Fig. 11b). It is noteworthy 

that face aspect ratio is the feature dimension with the relatively highest incidence of non-
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ramp-shaped tuning curves and the dimension on which the Gaussian method 

“underperformed” the most, indicating the drop in significant tuning curves found by the 

Gaussian method is not simply due to fitting problems with ramp-shaped tuning curves. 

Supplementary Figure 11 Incidences of tuning as assessed by the Gaussian (green line) and Entropy 
based methods (gray bars). (a) Number of neurons with significant tuning to n dimensions (cf. manuscript 
Fig. 3c). (b) Number of neurons tuned to each dimension (cf. manuscript Fig. 3d), dotted green line 
indicates expected false detection level of the Gaussian method (1%, as validated in randomly generated 
d )

When we asked which fraction of the tuning curves found to be significantly tuned by the 

Entropy method, were also found to be significantly tuned by the Gaussian method. The 

number was 52%. Thus, the Gaussian method misses almost half of the dimensions found 

to be significant by the Entropy method. In hindsight, this may not be that surprising for 

several reasons. First, the Gaussian method assumes a certain shape of tuning – major 

deviations from that shape are not considered. This was likely not the decisive factor 

though, since the majority of tuning curves found with the Entropy method could well be 

approximated by a Gaussian. More importantly, however, the power of the Gaussian 

method is limited, because it is only based on 11 data points, the average tuning curve, to 

fit a function with four parameters. (We tried several ways to overcome this limitation, 

especially by splitting the data and doing multiple fits or by fitting several dimensions at 

once, but none of these methods proved to be robust.) In contrast, the Entropy method 

directly takes into account the full wealth of a data set obtained by several thousand 

stimulus presentations, because the entropy value is tested against the entire distribution 
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of shift predictors, and thus tuning can be detected with higher statistical power. In brief, 

fitting to the average tuning curve cannot take into account the variability of the data. 

Therefore, the power of the method to differentiate between true tuning peaks and 

randomly occurring ones (and spikes occur frequently in randomly generated data, 

especially with cells of low firing rates) is low. 

The finding that only 52% of the dimensions the Gaussian method deemed significantly 

tuned had been found by the Entropy method, implies that the Gaussian method did find a 

sizable number of dimensions which the Entropy method had not found. We next 

investigated the properties of these “new” tuning curves. Do they point out a limitation of 

the Entropy method? First, it should be remembered that when we employed the Entropy 

method,  for a dimension to be called significantly tuned, we had applied two criteria that 

we did not use in the case of the Gaussian method (because it would then have found 

Supplementary Figure 12 Results of Gaussian fitting method. (a) Scatter plot of modulation depth and 
firing rate of all tuning curves the Gaussian method, but not the Entropy method had labeled significant. 
Dotted lines mark 10Hz firing rate and 25% modulation depth, respectively. (b) Comparison of modulation 
depth for Gaussian fits that the Entropy method found to be significant, too (red), or the Entropy method 
found not to be significant (blue). (c) Same as b, but for tuning curve width. (d) Scatter plot, of all 
significant Gaussian fits, modulation depth vs. peak width. (e) Three examples of tuning curves the 
Gaussian, but not the Entropy method found to be significant. Case on the left shows narrow peak. 
Maximal response value may or may not be an outlier response. 
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even fewer dimensions). We had required the dimension to be significantly tuned at two 

subsequent time intervals (spaced at least two times the temporal smoothing kernel width 

apart from each other). We had further required a modulation depth of the tuning curve of 

25% or more. As it turned out, 36% of the dimensions found significantly tuned by the 

Gaussian method, would not have met that minimal tuning modulation depth criterion 

(Supplementary Fig. 12a). The second striking feature of this plot is that the majority of 

tuning (55%) is found for low firing rates (less than 10Hz). Second, we inspected the 

shape of the tuning curves more closely and compared tuning that both Gaussian and 

Entropy method had found significant (Supplementary Fig. 11) with those that only the 

Gaussian method had found significant (Supplementary Fig. 12e). The modulation 

depth was significantly higher for the former group of tuning curves than for the latter 

(average tuning depth 111% vs. 34%, p<<0.001, Mann-Whitney U-test, Supplementary 

Fig. 12b). Furthermore tuning width was on average narrower for the tuning curves only 

the Gaussian method had detected (2σ: 4.7 vs. 7.7 feature values, p<<0.001, Mann-

Whitney U-test, Supplementary Fig. 12c). Thus in a scatter plot of tuning curves along 

these two parameters (Supplementary Fig. 12d), these two sets of tuning curves are 

clearly distinct.  

More weakly and more narrowly tuned tuning curves are, as our tests with randomly 

generated data showed, more susceptible to be confused with non-systematic variations 

of tuning curves, especially in cases of low firing rates. In these cases the Entropy 

method would be more conservative, because the set of shift-predictors would contain 

similarly “spiky” curves, because the shuffle predictors would be similarly noisy as the 

tuning curve. In other words: tuning curves were deemed insignificant by the Entropy 

method, because (a) their tuning was weak, (b) because tuning was not reproducible at 

temporal separations of ≥ 30 ms, or (c) because similar tuning modulations were 

generated from shift predictor data. Note that the expected number of false positive 
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tuning dimensions of the Gaussian fit method was 52 for our data set (at a p=0.01 

significance level). Thus, the Gaussian fitting method does not give us much confidence 

to securely declare an observed tuning to be real. 

In summary, we found the Gaussian fitting method, though more prone to a higher false 

positive detection rate, to be less powerful and reliable in finding significantly tuned 

dimensions. Therefore, in light of these methodological results, we think that this method 

does not present an attractive alternative the reshuffling method we have used in our 

manuscript. We therefore think that the result of Gaussian fitting supports our decision to 

use the Entropy method instead.  
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